A Stratonovich–Skorohod integral formula for Gaussian rough paths

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple Counting Formula for Lattice Paths

Let α,β ,x,y be positive integers. Fix a line L : Y = αX + β , and a lattice point Q(x,y) on L. It is well known that the number of lattice paths from the origin to Q which touches L only at Q is given by β x + y ( x + y x )

متن کامل

A Gaussian Kinematic Formula

In this paper, we consider smooth, real-valued random fields built up from i.i.d. copies of centered, unit variance smooth Gaussian fields on a manifold M . Specifically, we consider random fields of the form fp = F (y1(p), . . . , yk(p)) for F ∈ C(R;R) and (y1, . . . , yk) a vector of C centered, unit-variance Gaussian fields. For fields of this type, we compute the expected Euler characterist...

متن کامل

Ramification of rough paths

The stack of iterated integrals of a path is embedded in a larger algebraic structure where iterated integrals are indexed by decorated rooted trees and where an extended Chen’s multiplicative property involves the Dürr-Connes-Kreimer coproduct on rooted trees. This turns out to be the natural setting for a non-geometric theory of rough paths. MSC: 60H99; 65L99

متن کامل

Sensitivities via Rough Paths

Motivated by a problematic coming from mathematical finance, the paper deals with existing and additional results on the continuity and the differentiability of the Itô map associated to rough differential equations. These regularity results together with the Malliavin calculus are applied to the sensitivities analysis of stochastic differential equations driven by multidimensional Gaussian pro...

متن کامل

A novel formula for Gaussian Berezin integrals

We present a novel formula for Gaussian Berezin correlation functions. A formula well known in the literature expresses these quantities in terms of submatrices of the inverse matrix appearing in the Gaussian action. Our formula allows one to evaluate these integrals without calculating the inverse of the matrix. The derivation of the formula is obtained via a recently proposed method to calcul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 2019

ISSN: 0091-1798

DOI: 10.1214/18-aop1254